Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells.
نویسندگان
چکیده
BACKGROUND Cardiosphere-derived cells (CDCs) are an attractive cell type for tissue regeneration, and autologous CDCs are being tested clinically. However, autologous therapy necessitates patient-specific tissue harvesting and cell processing, with delays to therapy and possible variations in cell potency. The use of allogeneic CDCs, if safe and effective, would obviate such limitations. We compared syngeneic and allogeneic CDC transplantation in rats from immunologically-mismatched inbred strains. METHODS AND RESULTS In vitro, CDCs expressed major histocompatibility complex class I but not class II antigens or B7 costimulatory molecules. In mixed-lymphocyte cocultures, allogeneic CDCs elicited negligible lymphocyte proliferation and inflammatory cytokine secretion. In vivo, syngeneic and allogeneic CDCs survived at similar levels in the infarcted rat heart 1 week after delivery, but few syngeneic (and even fewer allogeneic) CDCs remained at 3 weeks. Allogeneic CDCs induced a transient, mild, local immune reaction in the heart, without histologically evident rejection or systemic immunogenicity. Improvements in cardiac structure and function, sustained for 6 months, were comparable with syngeneic and allogeneic CDCs. Allogeneic CDCs stimulated endogenous regenerative mechanisms (cardiomyocyte cycling, recruitment of c-kit(+) cells, angiogenesis) and increased myocardial vascular endothelial growth factor, insulin-like growth factor-1, and hepatocyte growth factor equally with syngeneic CDCs. CONCLUSIONS Allogeneic CDC transplantation without immunosuppression is safe, promotes cardiac regeneration, and improves heart function in a rat myocardial infarction model, mainly through stimulation of endogenous repair mechanisms. The indirect mechanism of action rationalizes the persistence of benefit despite the evanescence of transplanted cell survival. This work motivates the testing of allogeneic human CDCs as a potential off-the-shelf product for cellular cardiomyoplasty.
منابع مشابه
Safety and Efficacy of Allogeneic Cell Therapy in Infarcted Rats Transplanted with Mismatched Cardiosphere-Derived Cells Running title: Malliaras et al.; Allogeneic CDCs for Myocardial Repair
Background-Cardiosphere-derived cells (CDCs) are an attractive cell type for tissue
متن کاملIntracoronary allogeneic cardiosphere‐derived stem cells are safe for use in dogs with dilated cardiomyopathy
Cardiosphere-derived cells (CDCs) have been shown to reduce scar size and increase viable myocardium in human patients with mild/moderate myocardial infarction. Studies in rodent models suggest that CDC therapy may confer therapeutic benefits in patients with non-ischaemic dilated cardiomyopathy (DCM). We sought to determine the safety and efficacy of allogeneic CDC in a large animal (canine) m...
متن کاملApplication and Assessment of Allogeneic Fibroblasts for Cell Therapy
Background and Objective: In recent years, due to increasing number of patients with non-healing skin ulcers, skin substitutes have been used. Skin substitutes contain living cells causing faster and more effective wound healing. Therefore, research on the use of autologous and allogeneic cells such as fibroblasts in skin substitutes has attracted attentions. However, there are...
متن کاملPartial NK cell tolerance induced by radioresistant host cells in rats transplanted with MHC-mismatched bone marrow.
We have studied the effect of radioresistant host cells in inducing tolerance and adaptation of the MHC recognition repertoire of donor-derived NK cells in stem cell allotransplanted (allo-SCT) rats. Sub-lethally irradiated PVG.1AV1 rats (RT1(av1)) were transplanted with bone marrow from fully MHC-mismatched allotype-marked PVG.7B (RT1(c)) rats; MHC-identical PVG (RT1(c)) controls were transpla...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 125 1 شماره
صفحات -
تاریخ انتشار 2012